Abstract

The origin of large and small particle axial bands in long rotating tumblers is a long-standing question. Using DEM simulations, we show that this axial segregation is due to a Rayleigh-Taylor instability which is characterized by the fact that the density of a granular medium increases with mixing and decreases with segregation. For initially mixed particles, segregation and collisional diffusion in the flowing layer balance and lead to a three-layer system, with a layer of large particles over a layer of small particles, and, interposed between these layers, a layer of more densely packed mixed particles. The higher density mixed particle layer over the lower density small particle layer induces a Rayleigh-Taylor instability, evident as waviness in the interface between the layers. The waviness destabilizes into ascending plumes of small particles and descending plumes of mixed particles with large particles enriched near the surface, which become evident as small and large particle bands visible at the free surface. Rolls driven by segregation at the tilted interface between plumes maintain the pattern of frozen plumes. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.