Abstract

Abstract The flow around a circular cylinder in surfactant solution was investigated experimentally by measurement of the pressure and velocity profiles in the Reynolds number range 6000 < Re < 50000. The test surfactant solutions were aqueous solutions of Ethoquad O/12 (Lion Co.) at concentrations of 50, 100 and 200 ppm, and sodium salicylate was added as a counterion. It was clarified that the pressure coefficient of surfactant solutions in the range of 10000 < Re < 50000 at the behind of the separation point was larger than that of tap water, and the separation angle increased with concentration of the surfactant solution. The velocity defect in surfactant solutions behind a circular cylinder was smaller than those in tap water. The drag coefficients of a circular cylinder in surfactant solutions were smaller than those of tap water in the range 10000 < Re < 50000, and no drag reduction occurred at Re = 6000. The drag reduction ratio increased with increasing concentration of surfactant solution. The maximum drag reduction ratio was approximately 35%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call