Abstract

AbstractWe experimentally investigated streamwise variations of turbulent dynamics in drag-reducing turbulent boundary layer flows following the injection of non-ionic surfactant solutions, which mainly consisted of oleyldimethylamine oxide. We focus on the comparison of turbulence statistics between injected (i.e. heterogeneous) and premixed (i.e. homogeneous) surfactant solutions, in which the maximum drag reduction ratio of 50 % is the same at the most downstream position for both cases. The wall-normal profiles of turbulence statistics, such as streamwise and wall-normal turbulence intensities, seem to be noticeably different between heterogeneous and homogeneous surfactant solutions. However, streamwise variations in these maxima and the wall-normal locations are essentially similar to one another, except for the maximum of streamwise turbulence intensity, which is not arranged by the amount of drag reduction and is also dependent on the normalization due to outer and inner variables. Such complex behaviour of streamwise turbulence intensity would be caused by the formation of near-wall layered structures that are parallel to the wall. For both heterogeneous and homogeneous surfactant solutions, the streamwise variation in the drag reduction ratio corresponds well to those of the mean velocity in wall units and the wall-normal locations of maxima of streamwise and wall-normal turbulence intensities with both outer and inner scaling. Unlike the Reynolds shear stress, the correlation coefficient of the streamwise and wall-normal turbulent fluctuations is correlated well with the drag reduction ratio. We present plausible pictures of the development of turbulence structures such as hairpin vortices and low-speed streaks for the drag-reducing turbulent boundary layer in heterogeneous and homogeneous surfactant solutions, which are comprehensively derived from the present set of experimental measurements such as flow visualization, planar laser-induced fluorescence, two-component laser-Doppler velocimetry and particle image velocimetry on the streamwise and wall-normal plane and the streamwise and spanwise plane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call