Abstract
Drag force influences both the particle suspension and solids concentration distribution in a stirred tank. The influence of drag models on the prediction of solids suspension in a tank stirred by a hydrofoil impeller was studied in the present work using computational fluid dynamics (CFD) and experimental techniques. A comparison was made between the drag models based on Reynolds number only and those that take solid volume fraction into account or those that account for the effect of the free stream turbulence. One of the drag models investigated was a function of the energy dissipation rate, and therefore, the influence of the methods of determining the energy dissipation rate on the prediction of solids suspension was investigated. It was shown that a better agreement between the CFD simulation and experimental results can be obtained using drag models based on solids volume fraction than those that are based on Reynolds number only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.