Abstract
Recently, the concept of the interfacial area transport equation has been proposed to predict the dynamic change of interfacial structure in transient and developing flows. In this approach, bubbles are categorized into two groups (group 1: spherical/distorted bubbles; group 2: cap/slug/churn-turbulent bubbles) due to the considerable difference in their transport characteristics. In this paper, the equations for calculating drag coefficients of both groups under developing flow conditions are derived based on the momentum equations in the one-dimensional two-group two-fluid model. It is found that void fraction of both groups should be taken into account in determining drag coefficient of each group. The shape factor is important for group 2 bubbles even though it can be approximated to be unity for group 1 bubbles. Experimental data of air–water upward bubbly flows in various sizes of pipes are used to examine the existing drag coefficient model of group 1 bubbles. It is shown that the Ishii and Chawla’s models for spherical and distorted bubbles can predict the experimental data in the forced convective flow systems satisfactorily, which confirms their applicability to bubbly flow systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.