Abstract

Abstract The dynamic character of a system of the governing differential equations for the one-dimensional two-fluid model, where the appropriate momentum flux parameters are employed to consider the velocity and void fraction distribution in a flow channel, is analyzed. In response to a perturbation in the form of a traveling wave, a linear stability analysis is performed for the governing differential equations. The analytical expression for the growth factor as a function of wave number, void fraction, drag coefficient, and relative velocity is derived. It provides the necessary and sufficient conditions for the stability of the one-dimensional two-fluid model in terms of momentum flux parameters. It is analytically shown that the one-dimensional two-fluid model is mathematically well posed by use of appropriate momentum flux parameters, while the conventional two-fluid model makes the system unconditionally unstable. It is suggested that the velocity and void distributions should be properly accounted for in the one-dimensional two-fluid model by use of momentum flux parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call