Abstract

Savonius rotor, a class of drag-driven vertical axis wind turbine, has been extensively investigated mainly to calculate the torque and power coefficients (CT and CP) by various investigators. Hitherto, studies related to lift and drag characteristics are very few and have mainly been restricted to a semicircular-bladed rotor. A deeper investigation into the drag and lift coefficients (CD and CL) can result in the better design of rotor blades leading to an increment in CT and CP. In view of this, in the present investigation, CD and CL of an elliptical-bladed rotor with vent augmenters have been studied numerically. Initially, two-dimensional (2D) unsteady simulations using an ansys fluent solver is carried out to estimate the instantaneous CD and CL. The shear stress transport (SST) k–ω turbulence model is selected to solve the Reynolds averaged Navier Stokes (RANS) equations. Finally, three-dimensional (3D) unsteady simulations are carried out for the vented elliptical-bladed rotor. The unsteady simulations are performed for the nonvented elliptical- and semicircular-bladed rotors at the identical condition in order to have a direct comparison. From the unsteady simulations, the average CD for the vented elliptical profile is found to be 1.45; whereas, the average CD for the nonvented elliptical and semicircular profiles is found to be 1.43 and 1.35, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call