Abstract
The non-intrusive load decomposition method helps users understand the current situation of electricity consumption and reduce energy consumption. Traditional methods based on deep learning are difficult to identify low usage appliances, and are prone to model degradation leading to insufficient classification capacity. To solve this problem, this paper proposes a dilated residual aggregation network to achieve non-intrusive load decomposition. First, the original power data is processed by difference to enhance the data expression ability. Secondly, the residual structure and dilated convolution are combined to realize the cross layer transmission of load characteristic information, and capture more long sequence content. Then, the feature enhancement module is proposed to recalibrate the local feature mapping, so as to enhance the learning ability of its own network for subtle features. Compared to traditional network models, the null-residual aggregated convolutional network model has the advantages of strong learning capability for fine load features and good generalisation performance, improving the accuracy of load decomposition. The experimental results on several datasets show that the network model has good generalization performance and improves the recognition accuracy of low usage appliances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.