Abstract

Small-signal stability is an important concern in three-phase inverter-based ac power systems. The impedance-based approach based on the generalized Nyquist stability criterion (GNC) can analyze the stability related with the medium and high-frequency modes of the systems. However,. the GNC involves the right-half-plane (RHP) pole calculation of return-ratio transfer function matrices, which cannot be avoided for stability analysis of complicated ac power systems. Therefore, it necessitates the detailed internal control information of the inverters, which is not normally available for commercial inverters. To address this issue, this paper introduces the component connection method (CCM) in the frequency domain for stability analysis in the synchronous d–q frame, by proposing a method of deriving the impedance matrix of the connection networks of inverter-based ac power systems. Demonstration on a two-area system and a microgrid shows that: The CCM-enabled approach can avoid the RHP pole calculation of return-ratio matrices and enables the stability analysis by using only the impedances of system components, which could be measured without the need for the internal information. A stability analysis method based on d–q impedances, the CCM, and the determinant-based GNC is also proposed to further simplify the analysis process. Inverter controller parameters can be designed as stability regions in parameter spaces, by repetitively applying the proposed stability analysis method. Simulation and experimental results verify the validity of the proposed stability analysis method and the parameter design approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.