Abstract

Network of long noncoding RNA-microRNA (miRNA)-mRNA is becoming increasingly pivotal roles in carcinogenesis mechanism. Herein, we aim to delineate the mechanistic understanding of dipeptidyl peptidase like 10-antisense RNA 1 (DPP10-AS1)/miRNA-324-3p/claudin 3 (CLDN3) axis in the malignancy of pancreatic cancer (PC). Microarray profiling and other bioinformatics methods were adopted to predict differentially expressed long noncoding RNA-miRNA-mRNA in PC, followed by verification of expression of DPP10-AS1, microRNA-324-3p (miR-324-3p), and CLDN3 in PC cells. The relationship among DPP10-AS1, miR-324-3p, and CLDN3 were further assessed. The PC cell invasion and migration were evaluated by scratch test and transwell assay. Tumor formation and lymph node metastasis were assessed in nude mice. Highly expressed DPP10-AS1 and CLDN3 and poorly expressed miR-324-3p were identified in PC cells. The competitively binding between DPP10-AS1 and miR-324-3p was identified, and CLDN3 was targeted and downregulated by miR-324-3p. In addition, DPP10-AS1 was found to sequester miR-324-3p to release CLDN3 expression. DPP10-AS1 knockdown or miR-324-3p restoration diminished migration, invasion, tumor formation, microvessel density, and lymph node metastasis of PC cells, which was associated with CLDN3 downregulation. Taken together, the study identified the regulatory role of DPP10-AS1/miR-324-3p/CLDN3 axis in PC, offering a mechanistic basis suggesting DPP10-AS1 ablation as a therapeutic target against PC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call