Abstract
Signorini's law of unilateral contact and Coulomb's friction law constitute a simple and useful framework for the analysis of unilateral frictional contact problems of a linearly elastic body with a rigid support. For quasi-static, monotone-loadings, the discrete dual formulation of this problem leads to a quasi-variational inequality, whose unknowns, after condensation, are the normal and tangential contact forces at nodes of the initial contact area. A new block-relaxation solution technique is proposed here. At the typical iteration step, shown to be a contraction for small friction coefficients, two quadratic programming problems are solved one after the other: the former is a friction problem with given normal forces, the latter is a unilateral contact problem with prescribed tangential forces. The contraction principle is used to establish the well-posedness of the discrete formulation, to prove the convergence of the algorithm, and to obtain an estimate of the convergence rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comptes Rendus de l'Academie des Sciences Series I Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.