Abstract

We develop a connection between DP-colorings of $k$-uniform hypergraphs of order $n$ and coverings of $n$-dimensional Boolean hypercube by pairs of antipodal $(n-k)$-dimensional faces. Bernshteyn and Kostochka established a lower bound on the number of edges in a non-2-DP-colorable $k$-uniform hypergraph namely, $2^{k-1}$ for odd $k$ and $2^{k-1}+1$ for even $k.$ They proved that these bounds are tight for $k=3,4$. In this paper, we prove that the bound is achieved for all odd $k\geq 3$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.