Abstract

Electrospinning has been known as an efficient method for fabrication of polymer nanofibers. In this study, an electrospun nanofibrous mats based on polylactic acid with a defined release using doxorubicin was developed. The effects of process parameters, such as concentration, distance, applied voltage, temperature and flow rate on the mean diameter of electrospun doxorubicin-loaded polylactic acid nanofibers were investigated. The fiber morphology and mean fiber diameter of prepared nanofibers were investigated by scanning electron microscopy. Differential scanning calorimetry was employed to identify the presence of doxorubicin within nanofibers. Response surface methodology based on a five-level, five-variable central composite design was used to model the average diameter of electrospun polylactic acid/doxorubicin nanofibers. Mean fiber diameter was correlated to these variables by using a polynomial function at a 95% confidence level. The coefficient of determination of the model was found to be 0.93. The predicted fiber diameter was in good agreement with the experimental result. Differential scanning calorimetry results showed that the doxorubicin was loaded into the nanofibers successfully. In vitro drug release in phosphate-buffered solution and acetate buffer for the optimized and non-optimized samples demonstrated that diffusion is the dominant drug release mechanism for drug-loaded fibers. The initial burst release was observed for non-optimized nanofibers compared to optimized nanofibers. Optimized drug-loaded polylactic acid nanofibers could be good candidates for biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call