Abstract

AbstractThe annular modes of the extratropical atmosphere have received much attention for quantifying variability of the jet streams and storm tracks, despite the fact that the midlatitude circulation itself does not vary uniformly with longitude. While tropical fluctuations in geopotential height have lower amplitude than in the extratropics, they exhibit stronger zonal coherence, or dynamical annularity. A simple index is developed to characterize zonal‐mean anomalies of the tropical circulation. It reveals that anomalies in geopotential height and zonal wind migrate downward from the upper troposphere to the surface on a time scale of about 10 days. These features are distinguishable from known modes of tropical variability, the Madden‐Julian Oscillation in particular. Evidence from reanalysis and idealized model experiments confirms that this downward migration is quite generic and driven by mechanically forced variations in the strength of the Hadley circulation on subseasonal time scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.