Abstract
Land Use and Land Cover (LULC) classification is the process of locating and classifying regions of the Earth's surface (land cover) based on their physical attributes and human utilization (land use purpose). It is essential for mapping and monitoring changes in ecosystems, facilitating effective resource management and informed decision-making in land-use planning. Convolutional Neural Network (CNN’s) is incapable of capturing long-range dependencies. The effectiveness of transformers relies on extensive training datasets, yet many satellite datasets have comparatively limited sample sizes. Moreover, due to the numerous factors influencing visual prominence, it is challenging to obtain abundant features from a single-color space. To overcome these limitations, we introduce an innovative bicolor architecture Downstream Lingering Attention Transformer Network (DsLATNet). DsLATNet characterizes remote sensing images on two color spaces viz RGB and HSV by processing the information using Residual Network −50(ResNet-50) backbone network.Extracted features of backbone network are further refined to acquire detailed aware features through Downstream Lingering Feature Pyramid Network (DsLFPN).This is further integrated with a DuoTransformer that utilizes attention mechanisms to obtain long-range dependencies. Eventually, the features are aggregated using residual connections that are dilated in-depth multiple times to produce class labels. The efficacy of the algorithm is evaluated through standard classification accuracy metrics. Experimental results on both the Wuhan Dense Labeling Dataset (WHDLD) and the Gaofen Image Dataset (GID) exhibit that the suggested technique exceeds cutting-edge classification methods. WHDLD achieved an Overall Accuracy (OA) of 86.34 %, Average Accuracy (AA) of 75.62 %, and Kappa coefficient (K) of 80.75, while the GID exhibited superior performance with an OA of 86.43 %, AA of 88.13 %, and K of 81.25.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.