Abstract

Accurately assessing precipitation impacts due to anthropogenic global warming relies on numerical Earth system model (ESM) simulations. However, the discretized formulation of ESMs, where unresolved small-scale processes are included as semi-empirical parameterizations, can introduce systematic errors in the simulations. These can, for example, lead to an underestimation of spatial intermittency and extreme events. Generative deep learning has recently been shown to skillfully bias-correct and downscale precipitation fields from numerical simulations [1,2]. Using spatial context, these methods can jointly correct spatial patterns and summary statistics, outperforming established statistical approaches.However, these approaches require separate training for each Earth system model individually, making corrections of large ESM ensembles computationally costly. Moreover, they only allow for limited control over the spatial scale at which biases are corrected and may suffer from training instabilities.Here, we follow a novel diffusion-based generative approach [3, 4] by training an unconditional foundation model on the high-resolution target ERA5 dataset only. Using fully coupled ESM simulations of precipitation, we investigate the controllability of the generative process during inference to preserve spatial patterns of a given ESM field on different spatial scales. [1] Hess, P., Drüke, M., Petri, S., Strnad, F. M., & Boers, N. (2022). Physically constrained generative adversarial networks for improving precipitation fields from Earth system models. Nature Machine Intelligence, 4(10), 828-839. [2] Harris, L., McRae, A. T., Chantry, M., Dueben, P. D., & Palmer, T. N. (2022).A generative deep learning approach to stochastic downscaling of precipitation forecasts. Journal of Advances in Modeling Earth Systems, 14(10), e2022MS003120. [3] Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J. Y., & Ermon, S. (2021).  Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073. [4] Bischoff, T., & Deck, K. (2023). Unpaired Downscaling of Fluid Flows with Diffusion Bridges. arXiv preprint arXiv:2305.01822.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.