Abstract

The involvement of spinal NR2B, a N-methyl-D-aspartate (NMDA) receptor subunit, in the therapeutic effect of electro-acupuncture (EA) on chronic visceral hyperalgesia was investigated. Chronic visceral hyperalgesia was induced using an irritable bowel syndrome (IBS) model in rats. Graded colorectal distention (CRD) stimuli at strengths of 20, 40, 60 and 80mmHg were applied, and behavioral tests were performed to measure the abdominal withdrawal reflex (AWR) in response to the CRD stimuli and assess the severity of the visceral hyperalgesia. Rats were randomly divided into four groups: normal intact (control) group, IBS model (model) group, EA-treated IBS rats (EA) group and sham EA-treated IBS rats (sham EA) group. For the EA treatment, electric stimuli were applied through needles inserted into two acupoints [Zu-san-li (ST-36) and Shang-ju-xu (ST-37)] in both hind limbs, while the sham EA treatment consisted of only the insertion of needles into these same acupoints without an application of electric stimuli. Our results showed that AWR scores of the model group responding to CRD stimuli of 20, 40, 60 and 80mmHg were significantly increased. These increased scores subsequently decreased following EA treatment (P<0.05) compared with those for the other groups. The expression of NR2B in the superficial laminae (SDH, laminae I and II), nucleus proprius (NP, laminae III and IV), neck of the dorsal horn (NECK, laminae V and VI) and central canal region (lamina X) at thoracolumbar (T13-L2) and lumbosacral (L6-S2) segmental level significantly increased in the model group versus the control group (P<0.05) and significantly decreased after EA treatment (P<0.05). There were no significant changes in neither AWR scores nor expression of the NR2B subunit in these spinal regions after the sham EA treatment. These results confirm that EA can relieve chronic visceral hyperalgesia in IBS model rats and suggest that such an effect is possibly mediated through the downregulation of the NR2B subunits of NMDA at the spinal level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.