Abstract
BackgroundAberrant DNA damage of germ cells, which impairs spermatogenesis and lowers fertility, is an important factor contributing to male infertility. MicroRNAs (miRNAs) play a significant role in the expression and regulation of multiple genes during spermatogenesis. Our previous study found much lower miR-424 (murine homologue miR-322) levels in the seminal plasma of infertile patients with high DFI(DNA Fragmentation Index)than in the fertile group. However, the mechanism by which miR-322 regulates germ cells during spermatogenesis remains unknown.MethodsIn this study, we successfully established a GC-2 cell model of miR-322 downregulation resulting in impaired spermatogenesis. And the cell viability were measured using Cell Counting Kit-8 (CCK-8; Dojindo, Japan) and MTT (Sigma Aldrich, USA). Immunofluorescence assay was used to detect cell damage and the expression of apoptosis-related proteins were measured using real-time quantitative PCR and Western blot analysis. Target genes were predicted and verified by online database retrieval and Dual-luciferase reporter gene assay.ResultsWe observed evident decreases in the cell viability of GC-2 cells along with remarkable increases in apoptosis after miR-322 inhibition. While the expression of apoptosis-related genes, including Bax and caspases 3, 9, and 8 greatly increased in GC-2 cells after miR-322 downregulation, that of the anti-apoptotic Bcl-2 gene decreased. Ddx3x was found to be the direct target of miR-322. MiR-424 was then detected in the seminal plasma of infertile patients with high DFI(DNA Fragmentation Index); this miRNA was down-regulated but Ddx3x was upregulated in the infertile group.ConclusionMiR-322 plays a key role in promoting GC-2 cell apoptosis by directly regulating Ddx3x expression. MiR-424 downregulation in infertile men may induce spermatogenic cell apoptosis and sperm DNA damage by directly acting on the target gene locus Ddx3x, resulting in male infertility.
Highlights
The integrity of sperm DNA is vital to the outcome of pregnancy [1]
To investigate the contribution of miR-322 to spermatogenesis regulation, we developed a GC-2 cell model of miR-322 downregulation to explore the potential targets of miR-322 and directly verify our hypothesis that miR322 regulates the apoptosis of germ cells
Establishment of the GC-2 cell model of miR-322 downregulation In our study, miR-322 inhibitors were transfected to suppress miR-322 expression in GC-2 cells, while miRNA inhibitor negative controls (NCs) were transfected as the control group
Summary
The integrity of sperm DNA is vital to the outcome of pregnancy [1]. Sperm DNA damage frequently occurs in the male gamete of infertiles [4] due to various. Several studies have suggested that miRNAs play a crucial role in regulating spermatogenesis. Aberrant DNA damage of germ cells, which impairs spermatogenesis and lowers fertility, is an important factor contributing to male infertility. MicroRNAs (miRNAs) play a significant role in the expression and regulation of multiple genes during spermatogenesis. Our previous study found much lower miR-424 (murine homologue miR-322) levels in the seminal plasma of infertile patients with high DFI(DNA Fragmentation Index)than in the fertile group. The mechanism by which miR-322 regulates germ cells during spermatogenesis remains unknown
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.