Abstract

AbstractAlfalfa (Medicago sativa L.) is the most widely grown perennial forage crop and is a close relative of the model diploid legume Medicago truncatula Gaertn. However, use of alfalfa leads to substantial greenhouse gas emissions and economic losses related to inefficiencies in rumen fermentation. The provision of supplemental lipids has been used as a strategy to mitigate these issues, but it is a costly approach. The ability to enhance lipid content within the vegetative tissues of alfalfa would therefore be very advantageous. As such, our aim was to assess and select gene candidates to increase total shoot lipid content in M. truncatula using a virus‐induced gene silencing (VIGS) approach. We targeted gene homologs of the SUGAR‐DEPENDANT 1 (SDP1), ADP‐GLUCOSE‐PYROPHOSPHORYLASE SMALL SUBUNIT 1 (APS1), TRIGALACTOSYLDIACYLGLYCEROL 5 (TGD5), and PEROXISOMAL ABC TRANSPORTER 1 (PXA1) in M. truncatula for silencing. Reduced target transcript levels were confirmed and changes of shoot lipid content and fatty acid composition were measured. Silencing of SDP1, APS1, and PXA1 each resulted in significant increases in shoot total lipid content. Significantly increased proportions of α‐linolenic acid (18:3Δ9cis,12cis,15cis) were observed, and stearic acid (18:0) levels significantly decreased in the total acyl lipids extracted from vegetative tissues of each of the M. truncatula silenced plants. In contrast, palmitic acid (16:0) levels were significantly decreased in only SDP1‐ and PXA1‐silenced plants. Genes of PXA1 and SDP1 would be ideal targets for mutation as a means of improving the quality of alfalfa to increase feed efficiency and minimize greenhouse gas emissions from livestock production in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.