Abstract

This paper presents a novel downlink resource allocation scheme for OFDMA-based next generation wireless networks subject to inter-cell interference (ICI). The scheme consists of radio resource and power allocations, which are implemented separately. Low-complexity heuristic algorithms are first proposed to achieve the radio resource allocation, where graph-based framework and fine physical resource block (PRB) assignment are performed to mitigate major ICI and hence improve the network performance. Given the solution of radio resource allocation, a novel distributed power allocation is then performed to optimize the performance of cell-edge users under the condition that desirable performance for cell-center users must be maintained. The power optimization is formulated as an iterative barrier-constrained water-filling problem and solved by using the Lagrange method. Simulation results indicate that our proposed scheme can achieve significantly balanced performance improvement between cell-edge and cell-center users in multi-cell networks compared with other schemes, and therefore realize the goal of future wireless networks in terms of providing high performance to anyone from anywhere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.