Abstract

Integrating mobile edge computing (MEC) into the Internet of Things (IoT) enables the IoT devices of limited computation capabilities and energy to offload their computation-intensive and delay-sensitive tasks to the network edge, thereby providing high quality of service to the devices. In this article, we apply non-orthogonal multiple access (NOMA) technique to enable massive connectivity and investigate how it can be exploited to achieve energy-efficient MEC in IoT networks. In order to maximize the energy efficiency for offloading, while simultaneously satisfying the maximum tolerable delay constraints of IoT devices, a joint radio and computation resource allocation problem is formulated, which takes both intra- and inter-cell interference into consideration. To tackle this intractable mixed integer non-convex problem, we first decouple it into separated radio and computation resource allocation problems. Then, the radio resource allocation problem is further decomposed into a subchannel allocation problem and a power allocation problem, which can be solved by matching and sequential convex programming algorithms, respectively. Based on the obtained radio resource allocation solution, the computation resource allocation problem can be solved by utilizing the Knapsack method. Numerical results validate our analysis and show that our proposed scheme can significantly improve the energy efficiency of NOMA-enabled MEC in IoT networks compared to the existing baselines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call