Abstract

The present study describes the ultrastructural localization and labelling pattern of lectin in different microglial cell phenotypes in the postnatal rat brain using the isolectin, GSA I-B4. The nascent round and amoeboid microglial cells (round cells and cells displaying short processes) were labelled at their cytoplasmic membrane and the membrane of the subplasmalemmal vacuoles. In the course of their transformation into ramified forms with age, dense lectin labelling was observed successively at different sites in the differentiating cells. The most striking feature was the staining of the Golgi saccules on the trans face, the trans tubular network and associated vesicles and vacuoles in the 'intermediate' ramified microglia (ramified cells bearing thick and long processes and those with thin and long processes). The vacuoles with accumulated reaction products were closely associated with many microtubules extending into the cytoplasmic processes. At the surface, the lectin-labelled vacuoles and vesicles appeared to fuse with the membrane and their contents communicated with the exterior. In the advanced or most differentiated ramified microglial cells (cells bearing attenuated processes), the lectin staining at all the above mentioned sites became diminished. In conclusion, in the transformation of the round microglia into their ramified derivatives, the glycoconjugates at the cytoplasmic membrane are progressively reduced. It is postulated from this study that the down-regulation of the glycoconjugates of the microglial plasma membrane is due primarily to their internalization during endocytosis. This process would trigger a de novo galactosyl protein synthesis and/or modification at the trans Golgi saccules and trans tubular network probably in an attempt to degrade the internalized membrane glycoproteins or to replenish the consumption of the membrane glycoconjugates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.