Abstract

Strong cyclical persistence is a common phenomenon that has been documented not only in the levels but also in the volatility of many time series, specially in astronomical or business cycle data. The class of doubly fractional models is extended to include the possibility of long memory in cyclical (non-zero) frequencies in both levels and volatility, and a new model, the GARMA–GARMASV (Gegenbauer AutoRegressive Moving Average–Gegenbauer AutoRegressive Moving Average Stochastic Volatility), is introduced. A sequential estimation strategy based on the Whittle approximation to maximum likelihood is proposed and its finite sample performance is evaluated with a Monte Carlo analysis. Finally, a trifactorial in the mean and bifactorial in the volatility version of the model is proved to successfully fit the well-known sunspot index.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.