Abstract

The concept of a conformal deformation has two natural extensions: quasiconformal and harmonic mappings. Both classes do not preserve the conformal type of the domain, however they cannot change it in an arbitrary way. Doubly connected domains are where one first observes nontrivial conformal invariants. Herbert Groetzsch and Johannes C. C. Nitsche addressed this issue for quasiconformal and harmonic mappings, respectively. Combining these concepts we obtain sharp estimates for quasiconformal harmonic mappings between doubly connected domains. We then apply our results to the Cauchy problem for minimal surfaces, also known as the Bjorling problem. Specifically, we obtain a sharp estimate of the modulus of a doubly connected minimal surface that evolves from its inner boundary with a given initial slope.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.