Abstract

In this chapter we build the foundation for the work that comes in the rest of the book. We begin with the definition of two conformal invariants, the modulus of a curve family and the capacity of a condenser, which are two closely related notions. These tools enable us to define quasiconformal and quasiregular mappings which are the basic classes of mappings to be studied. Several examples of quasiconformal mappings are given illustrating the importance of this class of functions and their role in Geometric Function Theory. Moduli of continuity of harmonic mappings, which are either quasiconformal or quasiregular at the same time, are considered and some sharp estimates are given for all dimensions n ≥ 2. In particular, we study the case of Lipschitz continuity of mappings defined in the unit ball.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.