Abstract

In this paper we consider a 3D three-parameter unfolding close to the normal form of the triple-zero bifurcation exhibited by the Lorenz system. First we study analytically the double-zero degeneracy (a double-zero eigenvalue with geometric multiplicity two) and two Hopf bifurcations. We focus on the more complex case in which the double-zero degeneracy organizes several codimension-one singularities, namely transcritical, pitchfork, Hopf and heteroclinic bifurcations. The analysis of the normal form of a Hopf-transcritical bifurcation allows to obtain the expressions for the corresponding bifurcation curves. A degenerate double-zero bifurcation is also considered. The theoretical information obtained is very helpful to start a numerical study of the 3D system. Thus, the presence of degenerate heteroclinic and homoclinic orbits, T-point heteroclinic loops and chaotic attractors is detected. We find numerical evidence that, at least, four curves of codimension-two global bifurcations are related to the triple-zero degeneracy in the system analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.