Abstract
Silicon-based refractive index sensors are of significance in the detection of gases, biological substances and chemical compounds. Among these, optical microcavities can confine the optical field to the micrometre-scale region, and possess the advantages of high Q factor, small size and easy integration. In this paper, a trapezoidal subwavelength grating (SWG) is introduced into a slot micro-ring resonator, and the mode splitting is employed to enrich the supported standing wave modes and optimize the spatial profiles of the resonant modes. The modes’ Q factor is improved and the high sensitivity and low detection limit is achieved. The optimal trapezoidal subwavelength grating double slot micro-ring resonator (T-SWGDSMRR) structure is obtained by designing the structural parameters and analyzing their effects on the sensing performance parameters and spectral characteristics. The T-SWGDSMRR, designed for detecting the glucose solution, demonstrated a low detection limit of 3.3×10−5 RIU and an ultra-high Q factor of up to 100825, accompanied by a refractive index sensitivity of 424 nm/RIU. Finally, a cascaded double micro-ring sensor is proposed using the vernier effect, through cascading the T-SWGDSMRR with a referential ring, the sensitivity is enhanced to 12828 nm/RIU, and the limit of detection is 3.12×10−6 RIU.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have