Abstract

A mathematical model is proposed for a frequency-modulated signal in the form of a system of Gaussian peaks randomly distributed in time. An analytic expression is obtained for continuous wavelet transform (CWT) of the model signal. For signals with time-varying sequence of peaks, the main ridge of the skeleton characterized by frequency νmaxMFB (t) is analyzed. The value of νmaxMFB (t) is determined for any instant t from the condition of the CWT maximum in the spectral range of the main frequency band (MFB). Double CWT of function νmaxMFB (t) is calculated for a frequency-modulated signal with a transition regions of smooth frequency variation (trend) as well as with varying frequency oscillations relative to the trend. The duration of transition periods of the signal is determined using spectral integrals Eν(t). The instants of emergence and decay of low-frequency spectral components of the signal are determined. The double CWT method can be used for analyzing cardiac rhythms and neural activity, as well as nonstationary processes in quantum radio physics and astronomy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.