Abstract

AbstractInteraction of atoms with twisted light is the subject of intense experimental and theoretical investigation. In almost all studies, the atom is viewed as a localized probe of the twisted light field. However, as argued in this paper, conceptually novel effects will arise if light‐atom interaction is studied in the double‐twisted regime with delocalized atoms, that is, either via twisted light absorption by atom vortex beam, or via two‐twisted‐photon spectroscopy of atoms in a non‐vortex but delocalized state. Even for monochromatic twisted photons and for an infinitely narrow line, absorption will occur over a finite range of detuning. Inside this range, a rapidly varying absorption probability is predicted, revealing interference fringes induced by two distinct paths leading to the same final state. The number, location, height, and contrast of these fringes can give additional information on the excitation process which would not be accessible in usual spectroscopic settings. Visibility of the predicted effects will be enhanced at the future Gamma factory thanks to the large momenta of ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.