Abstract

Due to the extreme dynamic weather, important industrial facilities and infrastructure providing vital support for people’s lives usually face the hazards of fire and icing, especially in the weather of thunderstorm and ice. Therefore, to further establish a safe community, we develop a dual-functional polyurea (PUA) coating used as protective materials by introducing flame retardancy and solar de-icing performance. Based on the microencapsulation and electrostatic self-assembly technologies, flame-retardant and thermochromic microcapsules (TCM) are firstly prepared and then added into PUA resin, by using melamine resin and bio-based phytic acid/chitosan (PA/CS) hybrids as double-shell materials. The high phosphorus content of PA and the carbon-forming effect of CS together play a synergistic flame retardant effect, not only improving the thermal stability of microcapsules but also enhancing the flame retardant property of PUA coating. In the cone calorimetry test, the ignition time of TCM@PA/CS@PUA-3 is longer, and the pHRR is reduced by 19.93 %, which shows the improvement of flame retardant performance. Due to the thermochromic mechanism, TCM@PA/CS@PUA composite coatings are able to adjust the photo-thermal conversion ability according to different environment temperature, achieving less temperature in hot environment and higher temperature in cold environment. The excellent photo-thermal conversion ability also promotes the ice melting and slide in 525 s. This polyurea composite coating with both flame retardant and de-icing properties shows great potential for maintaining the normal operation and safety of outdoor industrials and infrastructure in extremely dynamic weather conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.