Abstract
We report a novel, to the best of our knowledge, double-quantum-zero-quantum two-dimensional coherent spectroscopy (2DCS) that allows direct detection of the quantum coherence between multiparticle collective states. Through correlating the double-quantum coherence and the zero-quantum coherence, signatures for coherence between collective states can be well isolated as side peaks and readily identified in the 2D spectrum. The experiment is implemented in a vapor of rubidium atoms in a collinear 2DCS setup. Good agreement with a theoretical simulation using density matrix confirms the essential role of the interatomic correlation effect in generating the side peak signals. This 2D spectrum technique paves a new avenue for studying the coherent coupling of highly excited states and many-body properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have