Abstract

In this work we report the characterization of thin metallic coatings of interest for nuclear fusion technology through the ns double-pulse LIBS technique. The coatings, composed of a tungsten (W) or tungsten-tantalum (W-Ta) mixture were enriched with deuterium (D), to simulate plasma-facing materials (PFMs) or components (PFCs) of the next generation devices contaminated with nuclear fuel in the divertor area of the vacuum vessel (VV), with special attention to ITER, whose divertor will be made of W. The double pulse LIBS technique allowed for the detection of D and Ta at low concentrations, with a single laser shot and an average ablation rate of about 110 nm. The calibration free (CF-LIBS) procedure provided a semi-quantitative estimation of the retained deuterium in the coatings, without the need of reference samples. The presented results demonstrate that LIBS is an eligible diagnostic tool to characterize PFCs with high sensitivity and accuracy, being minimally destructive on the samples, without PFCs manipulation. The CF-LIBS procedure can be used for the search for any other materials in the VV without any preliminary reference samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.