Abstract

Double photoionization (DPI) leading to double core-hole states of Xe2+ 4d(-2) has been studied using a magnetic bottle time-of-flight spectrometer. The assignments of the Xe2+ 4d(-2) states are confirmed by the Auger lines extracted from fourfold coincidences including two photoelectrons and two Auger electrons. It is estimated that the core-core DPI into Xe2+ 4d(-2) at a photon energy of 301.6 eV has a favored cross section of about 0.3 MB. The intense core-core DPI is due to mixing of the 4d(-2) continuum with the 4p single photoionization, which is manifested in the relative intensities of the Xe2+ 4d(-2) components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.