Abstract

We study heat conduction through one-dimensional homogeneous lattices in the presence of the nonlinear on-site potentials containing the bounded and unbounded parts, and the harmonic interaction potential. We observe the occurrence of double negative differential thermal resistance (NDTR); namely, there exist two regions of temperature difference, where the heat flux decreases as the applied temperature difference increases. The nonlinearity of the bounded part contributes to NDTR at low temperatures and NDTR at high temperatures is induced by the nonlinearity of the unbounded part. The nonlinearity of the on-site potentials is necessary to obtain NDTR for the harmonic interaction homogeneous lattices. However, for the anharmonic homogeneous lattices, NDTR even occurs in the absence of the on-site potentials, for example, the rotator model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.