Abstract

Kinetics of the reactions of CO and methyl isocyanide with two diliganded intermediates of hemoglobin, alpha 2CO beta 2 and alpha 2 beta 2CO, have been studied by double-mixing and microperoxidase methods. The valency hybrids were prepared by high-pressure liquid chromatography. The reaction time courses of ligand combination and dissociation with both of the ligands were biphasic, and in CO combination reaction the zero-time amplitudes of the two phases were independent of the protein concentration. In the presence of 2 M urea the reaction time course was clearly dependent on protein concentration, as the zero-time amplitude of the fast phase increased at lower protein concentrations. These two observations indicate that little dissociation of tetramers into dimers occurs in the absence of urea. Consistent with this, the kinetic data for the reactions of CO best fit a reaction model consisting of two tetrameric species not in rapid equilibrium with each other. Various considerations, however, suggest that the reaction model is more appropriately described as 2D in equilibrium R in equilibrium T. The reaction of triliganded species (Hb4(CO)2Me1) with methyl isocyanide was monophasic, and the reaction model suggested a fast T in equilibrium R structural change after the binding of the third ligand. Although the precise structural nature of the two species remains undefined, it is concluded that the biphasicity in the reactions of the two hybrids is characteristic of the diliganded species only and is independent of the nature of the ligand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.