Abstract

We report a high electronic-optical power conversion efficiency of 11.4% in the laser operation of a double-mesa-structure vertical-to-surface transmission electro-photonic device with a vertical cavity. This high conversion efficiency is due to both reduction in the device resistance and increase in light emission efficiency. To reduce electrical resistance, a double mesa structure with a highly doped region is proposed and the resistance reduction is analyzed. To increase light emission efficiency, efficient carrier confinement in the active region by a proton-implanted structure, threshold current reduction by photon recycling, and decreased light absorption by annealing after proton implantation are utilized. Electronic-optical conversion efficiency of over 10% is achieved in surface-emitting devices for the first time to the authors' knowledge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.