Abstract
The dynamic evolution of the boundary between the ionosphere and auroral cavity is studied using 1D and 2D kinetic Vlasov simulations. The initial distributions of three singly ionized species (H+, O+, e-) are determined from space-based observations on both sides of an inferred strong double layer. The kinetic simulations reproduce features of parallel electric fields, electron distributions, ion distributions, and wave turbulence seen in satellite observations in the auroral upward-current region and, for the first time, demonstrate that auroral acceleration can be driven by a parallel electric field supported, in part, by a quasistable, strong double layer. In addition, the simulations verify that the streaming interaction between accelerated O+ and H+ populations continuously replenished by the double layer provides the free energy for the persistent formation of ion phase-space holes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.