Abstract
Halide perovskite nanocrystals (HPNCs) have emerged as promising materials for various light harvesting applications due to their exceptional optical and electronic properties. However, their inherent instability in water and biological fluids has limited their use as photocatalysts in the aqueous phase. In this study, we present highly water-stable SiO2-coated HPNCs as efficient photocatalysts for antimicrobial applications. The double SiO2 layer coating method confers long-term structural and optical stability to HPNCs in water, while the in situ synthesis of lead- and bismuth-based perovskite NCs into the SiO2 shell enhances their versatility and tunability. We demonstrate that the substantial generation of singlet oxygen via energy transfer from HPNCs enables efficient photoinduced antibacterial efficacy under aqueous conditions. More than 90% of Escherichia coli was inactivated under mild visible light irradiation for 6 h. The excellent photocatalytic antibacterial performance suggests that SiO2-coated HPNCs hold great potential for various aqueous phase photocatalytic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.