Abstract

Abstract Double-diffusive systems, such as thermosolutal convection, in which the density depends on two components that diffuse at different rates, are prone to both steady and oscillatory instabilities. Such systems can evolve into layered states, in which both components, and also the density, adopt a “staircase” profile. Turbulent transport is enhanced significantly in the layered state. Here we exploit an analogy between magnetic buoyancy and thermosolutal convection in order to demonstrate the phenomenon of magnetic layering. We examine the long-term nonlinear evolution of a vertically stratified horizontal magnetic field in the so-called “diffusive regime,” where an oscillatory linear instability operates. Motivated astrophysically, we consider the case where the viscous and magnetic diffusivities are much smaller than the thermal diffusivity. We demonstrate that diffusive layering can occur even for subadiabatic temperature gradients. Magnetic layering may be relevant for stellar radiative zones, with implications for the turbulent transport of heat, magnetic field, and chemical elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.