Abstract

Instabilities due to a vertically stratified horizontal magnetic field (magnetic buoyancy instabilities) are believed to play a key role in the escape of the Sun's internal magnetic field and the formation of active regions and sunspots. In a star the magnetic diffusivity is much smaller than the thermal diffusivity and magnetic buoyancy instabilities are double-diffusive in character. We have studied the nonlinear development of these instabilities, in an idealized two-dimensional model, by exploiting a non-trivial transformation between the governing equations of magnetic buoyancy and those of classical thermosolutal convection. Our main result is extremely surprising. We have demonstrated the existence of finite-amplitude steady convection when both the influential gradients (magnetic and convective) are stabilizing. This strange behaviour is caused by the appearance of narrow magnetic boundary layers, which distort the mean pressure gradient so as to produce a convectively unstable stratification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call