Abstract

Energies of the hollow molecules CH(4)(2+) and NH(3)(2+) with double vacancies in the 1s shells have been measured using an efficient coincidence technique combined with synchrotron radiation. The energies of these states have been determined accurately by high level electronic structure calculations and can be well understood on the basis of a simple theoretical model. Their major decay pathway, successive Auger emissions, leads first to a new form of triply charged ion with a core hole and two valence vacancies; experimental evidence for such a state is presented with its theoretical interpretation. Preedge 2-hole-1-particle (2h-1p) states at energies below the double core-hole states are located in the same experiments and their decay pathways are also identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.