Abstract

PurposeTo investigate the effects of solvents on the formation of self-assembled nanonization of albumin-oleic acid conjugates (AOCs) using a solvent exchange mechanism for the construction of in situ forming implants (ISFI).MethodsA poorly water-soluble drug, paliperidone palmitate (PPP), was chosen as the model drug. AOC was synthesized with the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) reaction. Dichloromethane, tetrahydrofuran, ethanol, N-methyl-2-pyrrolidone, dimethyl sulfoxide, and deionized water were selected to investigate the formation of self-assembled AOC nanoparticles (AONs). The volume ratios of organic solvents against water could determine the miscibility, injectability, and in situ nanonizing capability without aggregation.ResultsAs the polarity of the organic solvents increased, the AONs exhibited a spherical shape, and the larger the volume of the solvent, the smaller the size of the AONs. To use AOC in ISFI for controlled release of PPP, poly(d,l-lactide-co-glycolide) (PLGA) was combined with the AOC in 2 mL of N-methyl-2-pyrrolidone and water solution (1.8/0.2 ratio). The release rates of all formulations exhibited similar curve patterns overall but were more controlled in decreasing order as follows: AOC, PLGA, and AOC/PLGA for 14 days.ConclusionA combined formulation of AOC and PLGA was found to effectively control the initial burst release of the drug.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.