Abstract

We have studied the optical properties of three-dimensionally confined photon states in a spherical microcavity (the photonic dots) resonantly excited by photons emitted from semiconductor nanocrystals (the quantum dots). Glass and polymer microspheres with sizes of 2λ<R<10λ are characterized by spatially and temporally resolved micro-photoluminescence. The role of nanocrystal position and orientation is analyzed experimentally and theoretically. The emission spectra of single, bulk and hollow microspheres impregnated with CdSe quantum dots and quantum rods are investigated and the modification of the quantum dot radiative lifetime by the three-dimensional photon confinement is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.