Abstract
An international intercomparison of the dosimetry of three beta particle emitting ophthalmic applicators was performed, which involved measurements with radiochromic film, thermoluminescence dosimeters (TLDs), alanine pellets, plastic scintillators, extrapolation ionization chambers, a small fixed-volume ionization chambers, a diode detector and a diamond detector. The sources studied were planar applicators of 90Sr-90Y and 106Ru-106Rh, and a concave applicator of 106Ru-106Rh. Comparisons were made of absolute dosimetry determined at 1 mm from the source surface in water or water-equivalent plastic, and relative dosimetry along and perpendicular to the source axes. The results of the intercomparison indicate that the various methods yield consistent absolute dosimetry results at the level of 10%-14% (one standard deviation) depending on the source. For relative dosimetry along the source axis at depths of 5 mm or less, the agreement was 3%-9% (one standard deviation) depending on the source and the depth. Crucial to the proper interpretation of the measurement results is an accurate knowledge of the detector geometry, i.e., sensitive volume and amount of insensitive covering material. From the results of these measurements, functions which describe the relative dose rate along and perpendicular to the source axes are suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.