Abstract
In the radiation fields of high energy accelerator facilities, high-altitude aircraft and space flights, high-energy neutron dosimetry of ∼20 MeV or more is a significant issue for radiological protection. We studied the feasibility of experimental measurements of linear energy transfer (LET) distributions for secondary charged particles induced by fast neutrons using CR-39 plastic nuclear track detectors. In order to investigate a method of analyzing the CR-39 detectors that is appropriate for fast neutron dosimetry, two-layer CR-39 stacks were exposed to monochromatic neutrons (0.25, 0.55, 5, and 15 MeV) at the Fast Neutron Laboratory of Tohoku University in Japan. We also conducted Monte Carlo calculations to estimate the detection efficiency of the CR-39 detector for recoil protons. The CR-39 detectors treated by single-step chemical etching were used to obtain LET distributions for LET > 10 keV/µm-water. The results indicated that measurements of short-range particles are very important for obtaining the correct LET distributions. Using the measured LET distributions, we calculated neutron sensitivities, absorbed doses and dose equivalents based on the ICRP 60 Q–L relation and averaged quality factors. The dose equivalents were compared with the neutron fluence-to-dose equivalent conversion factors given by ICRP 74 and the averaged quality factors were compared with weighting factors given by ICRP 60 and ICRP 92.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.