Abstract
PurposeSeveral studies have demonstrated potential improvements in treatment time through the use of dynamic arcs for delivery of stereotactic body radiation therapy (SBRT) on Cyberknife. However, the delivery system has a finite accuracy, so that potential exists for dosimetric uncertainties. This study estimates the expected dosimetric accuracy of dynamic delivery of SBRT, based on realistic estimates of the uncertainties in delivery parameters.MethodsFive SBRT patient cases (prostate A — conventional, prostate B — brachytherapy‐type, lung, liver, partial left breast) were retrospectively studied. Treatment plans were produced for a fixed arc trajectory using fluence optimization, segmentation, and direct aperture optimization. Dose rate uncertainty was modeled as a smoothly varying random fluctuation of ± 1.0%, ±2.0% or ± 5.0% over a time period of 10, 30 or 60 s. Multileaf collimator uncertainty was modeled as a lag in position of each leaf up to 0.25 or 0.5 mm. Robot pointing error was modeled as a shift of the target location, with the direction of the shift chosen as a random angle with respect to the multileaf collimator and with a random magnitude in the range 0.0–1.0 mm at the delivery nodes and with an additional random magnitude of 0.5–1.0 mm in between the delivery nodes. The impact of the errors was investigated using dose‐volume histograms.ResultsUncertainty in dose rate has the effect of varying the total monitor units delivered, which in turn produces a variation in mean dose to the planning target volume. The random sampling of dose rate error produces a distribution of mean doses with a standard deviation proportional to the magnitude of the dose rate uncertainty. A lag in multileaf collimator position of 0.25 or 0.5 mm produces a small impact on the delivered dose. In general, an increase in the PTV mean dose of around 1% is observed. An error in robot pointing of the order of 1 mm produces a small increase in dose inhomogeneity to the planning target volume, sometimes accompanied by an increase in mean dose by around 1%.ConclusionsBased upon the limited data available on the dose rate stability and geometric accuracy of the Cyberknife system, this study estimates that dynamic arc delivery can be accomplished with sufficient accuracy for clinical application. Dose rate variation produces a change in dose to the planning target volume according to the perturbation of total monitor units delivered, while multileaf collimator lag and robot pointing error typically increase the mean dose to the planning target volume by up to 1%.
Highlights
The Cyberknife system (Accuray Inc., Sunnyvale, CA) has shown itself to be a valuable device for treating patients with stereotactic body radiotherapy (SBRT).[1–4]
A number of studies have demonstrated the potential for reduction in delivery time by the use of dynamic arc delivery, similar in nature to volumetric modulated arc therapy (VMAT), from noncoplanar orientations as opposed to the more common coplanar arcs used for VMAT
An SBRT technique was used in all cases, with at least 95% of the planning target volume (PTV) being required to receive the prescribed dose
Summary
The Cyberknife system (Accuray Inc., Sunnyvale, CA) has shown itself to be a valuable device for treating patients with stereotactic body radiotherapy (SBRT).[1–4]. The Cyberknife currently delivers radiation from a number of static locations around the patient in a step-and-shoot arrangement.[8]. A number of studies have demonstrated the potential for reduction in delivery time by the use of dynamic arc delivery, similar in nature to volumetric modulated arc therapy (VMAT), from noncoplanar orientations as opposed to the more common coplanar arcs used for VMAT. Kearney et al.[9] describe a noncoplanar arc optimization algorithm for Cyberknife with a circular collimator. They describe an optimization method for producing dynamic arcs on the Cyberknife with MLC, using direct aperture optimization.[10]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have