Abstract
We present an adaptive Bayesian method for dose-finding in phase I/II clinical trials based on trade-offs between the probabilities of treatment efficacy and toxicity. The method accommodates either trinary or bivariate binary outcomes, as well as efficacy probabilities that possibly are nonmonotone in dose. Doses are selected for successive patient cohorts based on a set of efficacy-toxicity trade-off contours that partition the two-dimensional outcome probability domain. Priors are established by solving for hyperparameters that optimize the fit of the model to elicited mean outcome probabilities. For trinary outcomes, the new algorithm is compared to the method of Thall and Russell (1998, Biometrics 54, 251-264) by application to a trial of rapid treatment for ischemic stroke. The bivariate binary outcome case is illustrated by a trial of graft-versus-host disease treatment in allogeneic bone marrow transplantation. Computer simulations show that, under a wide rage of dose-outcome scenarios, the new method has high probabilities of making correct decisions and treats most patients at doses with desirable efficacy-toxicity trade-offs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.