Abstract

Microplastic contamination in terrestrial ecosystem is emerging as a global threat due to rapid production of plastic waste and its mismanagement. It affects all living organisms including plants. Hence, the current study aims at understanding the effect of polyethylene microplastics (PE-MPs) at different concentrations (0, 0.25, 0.50, 0.75, and 1.00% w/w) on the plant growth and yield attributes. With blackgram as a test crop, results revealed that a maximum reduction in physiological traits like photosynthetic rate; chlorophyll a, b; and total chlorophyll by 5, 14, 10, and 13% at flowering stage; and an increase in biochemical traits like ascorbic acid, malondialdehyde, proline, superoxide dismutase, and catalase by 11, 29.7, 16, 22, and 30% during vegetative stage was observed with 1% PE-MP application. Moreover, a reduction in growth and yield attributes was also observed with increasing concentration of microplastics. Additionally, application of 1% PE-MPs decreased the soil bulk density, available phosphorus, and potassium, whereas the EC, organic carbon, microbial biomass carbon, NO3-N, and NH4-N significantly increased. Moreover, the presence of PE-MPs in soil also had a significant influence on the soil enzyme activities. Metagenomic analysis (16s) reveals that at genus level, Bacillus (19%) was predominant in control, while in 1% PE-MPs, Rubrobacter (28%) genus was dominant. Microvirga was found exclusively in T5, while the relative abundance of Gemmatimonas declined from T1 to T5. This study thus confirms that microplastics exert a dose-dependent effect on soil and plant characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.