Abstract
Iron's chemical structure and its ability to initiate one-electron reactions are properties that cause it to play a major role in the production and metabolism of oxygen free radicals in biological systems. Oxygen free radicals are conjectured to cause cardiac failure in individuals afflicted with disorders of iron overload. We report on the use of both acyloins and aldehydes as markers of oxidative stress in a murine model of chronic iron-overload cardiomyopathy. Twenty mice were randomized to four treatment groups: (1) control (0.2 mL normal saline ip/mouse/d); (2) 100 mg iron (0.05 mL iron dextran/mouse/d); (3) 200 mg iron (0.1 mL iron dexxtran/mouse/d); (4) 400 mg iron (0.2 mL iron dextran/mouse/d). Significant dose-dependent increases in both total heart aldehyde and total heart acyloin concentrations were found. Furthermore, a significant positive correlation existed between the dose of iron administered and each quantified aldehyde and acyloin found in the heart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.