Abstract

The long-term stability of nuclear waste forms is an important consideration in their selection for safe disposal of radioactive waste. Stability against long-term radiation damage is particularly difficult to assess by short-term laboratory experiments. Much of the displacement damage in high-level waste forms will be generated by heavy recoil nuclei emitted during the α-decay process of long-lived actinide elements. Hence, an accelerated aging test which reliably simulates the α-recoil damage accumulated during thousands of years of storage is desirable. One recent approach to this simulation is to implant the waste form with heavy Pb-ions.I- 6 If the validity of this approach is to be fully assessed, two important questions which have not yet been investigated must be answered.(1) Is the structural damage, including cumulative effects, similar for irradiation by Pb-ions and a-recoil nuclei in a given material? (2) Is the dose-dependence of the accumulated damage similar? The purpose of this investigation was to assess the extent of these similarities in selected materials. We utilized transmission electron microscopy (TEM) to characterize the radiation damage and measure its dose-dependence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call